SYLLABI OF FIRST YEAR B.TECH. COURSES

ACS1110 APPLIED CHEMISTRY

		AFFLIED CHEMISIKI
Course Title		Applied Chemistry
Course Number		ACS1110
Credits		4
Course Category		BS
Pre-Requisite if any		Nil
Contact Hours		3-1-0 (Lecture-Tutorial-Practical)
Type of Cours		Theory
Course Assess	sment	Course Work (Home Assignment) (15%)
		Mid Semester Examination (1 hour) (25%)
6	— — — — — — — — — —	End Semester Examination (2 hour) (60%)
Course	To impart the kno	owledge of applications of chemical sciences in Engineering and Technology
Objectives Course	After completion	of the course the student shall be able to Understand:
Outcome		nt technology for municipal and industrial use.
Outcome		quid and gaseous fuels. Types of lubrications their testing
	and application	
		on and techniques to control corrosion.
		rs and their applications.
Syllabus		ent of water for municipal and industrial use (12 L) Sources of water,
-)		vater, Requirement water for municipal use, Municipal water treatment
		sedimentation, Sedimentation with coagulation (Role of alum, sodium
		oppers) filtration (operation of sand filter), Disinfection, Requirements of a
		, Types of disinfesting agents (Bleaching powder, Liquid chlorine, Ozone, UV
		Chloramine and their disinfection action), Break point chlorination, Super
		de- chlorination. Requirements of water for industrial use, hardness of water,
		s, calculations on hardness, determination of hardness by soap and EDTA
		defects: Sludge and scale formation, priming and foaming, Boiler corrosion
		embrittlement, Boiler water treatment: External treatment (water softening
		oda process, Zeolite process and Ion-exchange process, Internal treatment
		tion based on lime-soda and zeolite process.
		nd Lubricants (12 L)
		s, Classification of fuels, Calorific value, Gross and net calorific value, Units
		, Determination of calorific value by bomb calorimeter, Dulong's formula,
		ems, Coal, Classification of coal, Coal analysis (Proximate and ultimate
		cance, Classification of petroleum, Fractions of petroleum and their uses,
		al and catalytic cracking (fixed bed only), Synthetic petrol, Synthesis of petrol
		h process and Bergius process, Gaseous fuels (CNG, LPG), Advantages and
		f Definition and classification of lubricants, Functions, of lubricants,
	0	brication, liquid lubricants: petroleum oils, purification of crude petroleum
		litives in the blended oils, Semi-solid lubricants or Greases: preparation and
		lubricants, Selection of lubricants.
		ion and its prevention (12 L)
		icance of corrosion, classification of corrosion, DRY corrosion, Mechanism of
		pes of oxide films, pilling Bedworth rule, Electrochemical corrosion, Electrode
		measurements, Electrode reactions, Electrochemical cell, Nernst equation,
		d on EMF of an electrochemical cell, Electrochemical and Galvanic series and
	tneir importance,	Mechanism of electrochemical corrosion (Corrosion of Fe in HCI and rusting

of I	Fe)Factors influencing corrosion rate, Corrosion control methods, Proper design (designing		
prii	nciples), Material selection, catholic protection (sacrificial and impressed current), Metallic		
coa	tings (methods of applications, hot dipping, galvanizing, timing). Organic Coatings: Paints,		
Rec	uirements of good paints, Constituents of paints and their functions, drying mechanism of		
oil,	Varnishes (types, constituents), Characteristic of a good varnishes.		
UN	IT_IV: High polymers (12 L)		
1	roduction, Homo-polymers and Copolymers, Tacticity, Functionality, classification of		
pol	lymers (based on origin, sources, thermal behaviour, structure, synthesis method, polymer		
	ain growth), Types of polymerization, Mechanism of Polymerization (Free radical, anionic		
	d cationic), Plastics, Advantages and disadvantages, thermoplastic resins: Preparation		
^	operties and uses of cellulose acetate, PVC PS, PTFE, Nylons thermosetting resins:		
1	reparation properties and uses Bakelite, Polyesters, and epoxy resins, Different between		
	ermoplastics and thermosetting plastics, Molecular mass of a polymer, Types of molecular		
	ass, Elastomers: natural rubber, Structure of natural rubber, Extraction and processing of		
	tural rubber from rubber plant, Limitations of natural raw rubber, Vulcanization		
	dvantages, synthetic rubbers: Preparation properties and uses of Buna-S, Buna-N, Neoprene		
	and Thiocol rubbers, Compounding of rubbers.		
Suggestion1.A Text Book of Engineering Chemistry by SS. Dara, S. Chand & Co.,			
Readings/ New Delhi (India).			
Text/References2.Engineering Chemistry by B.K Sharma, Krishna Prakashan Media (P)			
	Ltd., Meerut.		
	3.Engineering Chemistry by P.C. Jain, Dhanpat Rai Publishing Company,		
	New Delhi.		

Course Title		Applied Chemistry Lab	
Course Number		ACS1910	
Credits		1.5	
Course Categ	gory	BS	
Pre-Requisit	e if any	Nil	
Contact Hou	rs	0-0-3 (Lecture-Tutorial-Practical)	
Type of Cou	rse	Practical	
Course Asse	ssment	Course Work (Reports/Viva-Voce) (60%)	
		End Semester Examination (2 hour) (40%)	
Course	To train the students for the application of the chemical sciences in the field of Engineering and		
Objectives	Technology		
Course	After completion of the course the student shall be able to Understand:		
Outcome	1. To estimate the hardness of water.		
	2. To carry out analysis of coal and grade the coal for industrial purposes.		
	3. To determined dissolved oxygen in water.		
	4. To carry out testing of lubricants like flash point, aniline point, relative		
	viscosity and drop point of grease and its applications.		
	5. To study and explore the nature of the electrochemical corrosion.		
	6. About the determination of available chlorine in bleaching powder.		
Syllabus	LIST OF EXPERIMENTS:		
	1. Determine total. Permanent and temporary hardness of water in ppm by versenate method.		
	 To determine the amount of dissolved oxygen in water in ppm units. 		
	3. To determine the cloud point, pour point and setting point of an oil.		
L	5. 10 acter	nane the cloud point, pour point and betting point of at on.	

ACS1910 APPLIED CHEMISTRY LAB

4. To determine the percentage of available chlorine in the given sample of		
bleaching powder.		
5. To carry out proximate analysis of the given sample of coal.		
determine the saponification value and percentage of fatty oil in the		
ven sample of compounded oil.		
7. To determine the aniline point of a given sample of an oil.		
8. To determine the relative viscosity of an oil by redwood viscometer and to		
study the variation of viscosity with change it temperature.		
To demonstrate and explore the electrochemical nature of aqueous corrosion.		
10. To determine the flash point of an oil by Abel's and Pensky Marten's		
apparatus.		
gs/ Lab Manual's Provided by the Department.		

AMS1110 APPLIED MATHEMATICS-I

Course Title		Applied Mathematics-I		
Course Number		AMS1110		
Credits		4		
Course Category		ESA		
Pre-Requisi		Nil		
Contact Hou	ırs	3-1-0 (Lecture-Tutorial-Practical)		
Type of Cou	ırse	Theory		
Course Asse	essment	Course Work (Home Assignment) (15%)		
		Mid Semester Examination (1 hour) (25%)		
		End Semester Examination (2 hour) (60%)		
Course		e fundamental concepts of matrices, differential and integral calculus, theory of		
Objectives		fferential equations and applications.		
Course		leting this course the students would be able to:		
Outcome		bly tools of the theory of matrices to relevant fields of engineering.		
	2. understand curve tracing, regions between different curves and expansion of functions.			
		3. apply tools of integration to find length, area and volume.		
	4. apply differential equation methods to physical problems.			
Syllabus	Unit 1 <u>Linear Algebra-Matrices</u> :			
		matrix, Consistency of a system of linear equations, Linear dependence and		
		nce of vectors, Eigen-values and Eigen vectors of a matrix, Cayley-Hamilton theorem,		
	Diagonalization of a matrix, Introduction of vector spaces, subspaces, finite dimension			
	vectorspaces and examples.			
	Unit 2 <u>Curve Tracing and Successive Differentiation</u> : Asymptotes, Tracing of curves in			
	cartesian, polar and parametric forms, Successive differentiation, Leibnitz theorem, Taylor and			
	Maclaurin theorems with remainder terms, Infinite series, Ratio, Comparison and Root tests of			
	convergence.			
	Unit 3 <u>Integration and its Applications</u> : Improper integrals, Beta and Gamma functions, Application of integration to length of curves including intrinsic equation, surface area and			
	volume of solids of revolution.			
		dinary Differential Equation: Exact differential equations, Integrating factors, Linear		
		equations of second and higher order with constant coefficients, Homogeneous		
	differential equations, Simultaneous linear differential equations, Applications to physical			
	problems, Method of variation of parameters.			
	r - 0 2 1 2 1 1 0 / 1			

Suggestion Readings/	1. R.K. Jain and S.R.K. Iyengar; Advanced Engineering Mathematics, Narosa.
Text/References	2. Thomas and Finney; Calculus and Analytical Geometry, Narosa Publishing
	House.
	Reference Books:
	1. Erwin Kreyszig; Advanced Engineering Mathematics, John Wiley & Sons,
	INC
	2. Chandrika Prasad; Mathematics for Engineers, Pothishala Pvt. Ltd.,
	Allahabad

Course Title		Applied Mathematics-II
Course Number		AMS1120
Credits		4
Course Category		ESA
Pre-Requisite if any		Nil
Contact Hou	rs	3-1-0 (Lecture-Tutorial-Practical)
Type of Cour	rse	Theory
Course Asses	ssment	Course Work (Home Assignment) (15%)
		Mid Semester Examination (1 hour) (25%)
		End Semester Examination (2 hour) (60%)
Course		partial differentiation, multiple integration and their applications, Laplace transform
Objectives	and its a	applications to differential equations, Fourier series and Fourier transforms.
Course	After co	mpleting this course the students would be able to:
Outcome	1.	apply the theory of functions of saveral variables in engineering problems.
	2.	use double and triple integrals to find area and volume.
	3.	apply Laplace transform method to solve differential equations.
	4.	apply Fourier series and Fourier transform methods in relavent areas.
Syllabus		Partial Differentiation and Applications: Functions of several variables, Partial
	differentiation, Euler's theorem for homogeneous functions, Total differential, Change of	
	variables, Jacobian, Taylor series for a function of two variables, Maxima and mini	
	functions of two variables.	
		Multiple Integration: Double and triple integrals, Change of variables, Change of
		integration, Applications to area and volume.
		Laplace Transform: Laplace transform of elementary functions, Shifting and other
		ns with important properties, Inverse Laplace transforms, Applications to single and
		of linear differential equations
		Fourier Series and Fourier Transform: Fourier series, Fourier coefficients, Half range
		Fourier series of odd and even functions, Fourier series of T-periodic function,
	Introdu	ction to Fourier transforms.
Suggestion		1. R.K. Jain and S.R.K. Iyengar; Advanced Engineering Mathematics, Narosa.
Readings/		2. Thomas and Finney; Calculus and Analytical Geometry, Narosa Publishing
Text/References		House.
		Reference Books:
		1. Erwin Kreyszig; Advanced Engineering Mathematics, John Wiley & Sons,
		INC 2. Chardrille Bread Mathematics for Erginsons Bathishele But I to
		2. Chandrika Prasad; Mathematics for Engineers, Pothishala Pvt. Ltd.,
		Allahabad

AMS1120 APPLIED MATHEMATICS-II

APS1110 APPLIED PHYSICS

e
0
-
irect
ials,
e of
ility
and
d on
ving,
ricol
rical ores,
tical
ucai
nit),
d its
cally
ime
ons,
ntive

	nit IV. Statistical Mechanics:	
	Statistical distributions, Maxwell-Boltzmann statistics, Molecular energies in an ideal gas,	
	Quantum statistics, Specific heats of solids, Free electrons in a metal and Electron- energy	
	distribution.	
Suggestion	1. Ben G. Streetman, "Solid State Electronic Devices" 5th edition (2000), Prentice-	
Readings/	Hall of India, Private Limited, New Delhi.	
Text/Reference	es 2. Arthur Beiser, "Concepts of Modern Physics" 6 th edition (2003), Mc. Graw Hills	
	Inc. International Edition.	
	3. M.R. Wehr, J.A. Richards Jr. and T.W. Adair III, "Physics of the Atom" 4th edition	
	(1984), Addison Wesley / Narosa.	
	4. M.R. Srinivasan, "Physics for Engineers" 1st Edition (1996), New Age	
	International (P)Limited, Publishers.	

Course Title	۰ ۲	Applied Physics Lab		
Course Number		APS1910		
Credits		1.5		
Course Category		BS		
Pre-Requisi		None		
Contact Ho		0-0-3 (Lecture-Tutorial-Practical)		
Type of Cou		Practical		
Course Asse		Course Work (Reports/Viva-Voce) (60%)		
Course Asse	essment			
Course	This servers	End Semester Examination (2 hour) (40%) should enable the student to		
Course				
Objectives		an understanding of the fundamental concepts with the help of experiments arize the student with the various experiments of the physical world around him/her.		
		oping experimental approach of Physics in his/her field of study.		
		ate the concepts of physics to the advancement of technology.		
		the student to gain expertise in design and maintenance of experimental setup.		
Course	Upon completion of the course, the student will be able to:			
Outcome	 Recognize and present real life examples of various experiment performed. 			
Outcome				
	experim			
		be how he/she can harness the benefits of some of the experiments to his /her area of		
		lization.		
		stand the professional and ethical responsibilities of the subject.		
		unicate effectively while speaking, employing graphics and writing.		
Syllabus	1. To	determine the moment of inertia, I of a flywheel about its axis of rotation.		
-		determine resistance per unit length, σ of a Carey Foster's Bridge wire and hence to find the		
	diff	ference between the two nearly equal unknown resistances.		
		determine the modulus of rigidity of the material of a wire, η by statical (vertical) method.		
		determine the refractive index, μ of the material of a prism for parrot green line in the		
		rcury spectrum.		
		study the variation of semiconductor resistance with temperature and hence to find the		
	ene	rgy- gap, Eg of the semiconductor.		
		(a) To study the V-I and power characteristics of a solar cell and also to determine its fill		
		factor.		
		(b) To study the current versus voltage characteristics of two light emitting diodes		
	(T	(LED) and hence to determine their cut in voltages.		
		determine the diameters of three thin wires with the help of a He-Ne Laser.		
		determine the coefficient of thermal conductivity, K of rubber in the form of a tube.		
	8. To	convert a Weston type galvanometer into an ammeter (ranges 5, 10 and 15 A) and a voltmeter		

APS1910 APPLIED PHYSICS LAB

	(ranges 5, 10 and 15 V).		
9.	To determine the wavelength, λ of yellow line of shorter wavelength in the mercury spectrum		
	with plane transmission grating.		
10.	To determine the specific rotation, αt of cane sugar solution in water using a biquartz		
	polarimeter.		
11.	To calibrate a given thermo-couple with the help of a potentiometer.		
	To find the operating voltage of a G.M. counter and to determine the absorption coefficient, μ of copper for gamma rays from 137 Cs source.		
13.	(a). To draw the graph between various values of capacitance and the corresponding frequencies		
	of a given oscillator and to determine the value of unknown capacitance by using Lissajous		
	Figures.		
14.	14. To draw the graph between various values of inductance and the corresponding frequencies of a		
	given oscillator and to determine the value of unknown inductance by using Lissajous Figures.		
15.	To determine Hall coefficient, RH and majority carrier concentration of a given semiconductor		
	sample.		
Suggestion Readings	1. Prof. D.S. Srivastava & Dr. Ameer Azam, Laboratory Manual of Applied		
Text/References	2. Physics Experiments, AMU, Aligarh		
	3. Indu Prakash and Ramakrishna, A Text Book of Practical Physics, Kitab Mahal, New		
	Delhi.		
	4. D. P. Khandelwal, A Laboratory Manual of Physics for Undergraduate Classes, Vani		
	Publication House, New Delhi.		
	5. K. K. Dey, B. N. Dutta, Practical Physics, Kalyani Publishers, 1981, New Delhi.		

CEA1110 ENVIRONMENTAL STUDIES

Course Title		Environmental Studies	
Course Number		CEA1110	
Credits		3	
Course Category		ESA	
Pre-Requisi	te if any	Nil	
Contact Hours		2-1-0 (Lecture-Tutorial-Practical)	
Type of Cou	ırse	Theory	
Course Asse	essment	Course Work (Home Assignment) (15%)	
		Mid Semester Examination (1 hour) (25%)	
		End Semester Examination (2 hour) (60%)	
Course		the students conversant with the basic concept of ecology, environment and	
Objectives		chemistry involved.	
	-	air pollution.	
		To make the students gain basic knowledge of Water Quality: Physical, Chemical and	
	Biological parameters.		
		· · · · · · · · · · · · · · · · · · ·	
		s, both natural and advance techniques.	
6		To give basic knowledge about importance of the solid waste and its management.	
Course	Upon successful completion of this course, it is expected that students will be able to:		
Outcome	1. Understand fundamental physical and biological principles that govern natural processes.		
	2. Demonstrate an in-depth understanding of the sub disciplines within environmental		
	studies (i.e. Biology. Chemistry, Physics etc).		
	3. Communicate environmental scientific information to both professional and lay audiences.		
	4. Demonstrate an understanding of current environmental challenges.		
	5. Develop a basic fundamental background for the higher environmental engineering courses		
	offered in civil engineering department.		

Syllabus	Unit 1:		
by mac us		isciplinary nature of environmental studies- Definition, Scope and Importance, Need for	
		awareness, Natural Resources- Renewable and non-renewable resources, Natural	
	-	es and associated problems, Forest resources: Use and over-exploitation, deforestation,	
		udies. Timber extraction, mining, dams and their effects on forest and tribal people.	
		resources: Use and over-utilization of surface and ground water, floods, drought,	
		s over water, dams-benefits and problems. Mineral resources: Use and exploitation,	
		mental effects of extracting and using mineral resources, case studies. Food resources:	
		food problems, changes caused by agriculture and overgrazing, effects of modern	
		ture, fertilizer-pesticide problems, water logging, salinity, case studies. Energy resources:	
		ng energy needs, renewable and non-renewable energy sources, use of alternate energy	
		. Case studies. Land resources: Land as a resource, land degradation, man induced	
	landslie	des, soil erosion and desertification. Role of an individual in conservation of natural	
	resourc	es. Equitable use of resources for sustainable lifestyles.	
	Unit 2:		
	Ecosyst	tems, Concept of an ecosystem, Structure and function of an ecosystem, Producers,	
		ners and decomposers, Energy flow in an ecosystem, Ecological succession, Food chains,	
		ebs and ecological pyramids. Introduction, types, characteristic features, structure and	
		n of: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems	
	· · ·	, streams, lakes, rivers, oceans, estuaries), Environmental Pollution- Definition, Cause,	
		and control measures of: Air pollution, Water pollution, Soil pollution, Marine pollution,	
		pollution, Thermal pollution, Nuclear hazards	
	Unit 3:		
		ersity and its conservation- Introduction, Definition : genetic, species and ecosystem	
		ty, Biogeographical classification of India, Value of biodiversity : consumptive use,	
	-	tive use, social, ethical, aesthetic and option values, Biodiversity at global, National and	
	local levels, India as a mega-diversity nation, Hot-sports of biodiversity, Threats to biodiversity		
	: habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity, Solid		
	waste Management: Causes, effects and control measures of urban and industrial wastes, Role		
	of an individual in prevention of pollution, Pollution case studies, Disaster management: floods,		
	earthquake, cyclone and landslides.		
	Unit 4:		
	Social I	ssues and the Environment- Unsustainable to Sustainable development, Urban problems	
	related	to energy, Water conservation, rain water harvesting, watershed management,	
		ement and rehabilitation of people; its problems and concerns. Case Studies,	
		nmental ethics: Issues and possible solutions, Climate change, global warming, acid rain,	
		ayer depletion, nuclear accidents and holocaust. Case Studies, Wasteland reclamation,	
		nerism and waste products, Environment Protection Act, Air (Prevention and Control of	
		on) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest	
		vation Act, Issues involved in enforcement of environmental legislation, Public	
	awaren Unit 5:	1855.	
		Population and the Environment- Population growth, variation among nations,	
		tion explosion – Family Welfare Programme, Environment and human health, Human	
	Rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information		
	Technology in Environment and human health, Case Studies, Field work: Visit to a local area to		
	document environmental assets river/forest/grassland/hill/mountain, Visit to a local pollute		
	site-Urban/Rural/Industrial/Agricultural, Study of common plants, insects, birds, Study of		
		ecosystems-pond, river, hill slopes, etc.	
Suggestion		1. Venugopala Rao, P., 2006, Principles of Environmental Science and Engineering,	
Readings/		Prentice-Hall of India Private Limited, New Delhi.	
Text/References		2. Masters, G.M., 1991, Introduction to Environmental Engineering and Science, Prentice-	

Hall International, Inc., Englewood Cliffs, NJ.
3. Peavy, H.S., D.R. Rowe and G. Tchobanoglous, 1985, Environmental Engineering,
McGraw-Hill Book Company, New York.
4. Erach Bharucha, 2nd Edition, Text Book of Environmental Studies for Undergraduate
Students, UGC.
Additional Learning Source:
1. Sawyer, C.N. and P.L. McCarty, 1978, Chemistry for Environmental Engineering, 3rd
Edition, McGraw-Hill Book Company, New York.
2. Tchobanoglous, G., H. Theisen and S. Vigil, 1993, Integrated Solid Waste Management,
McGraw-Hill Inc. Singapore.

CEA1120 STRENGTH OF MATERIALS

Course Title		Strength of Materials		
Course Number		CEA1120		
Credits		3		
Course Category		ESA		
Pre-Requisite if any		Nil		
Contact Hou		2-1-0 (Lecture-Tutorial-Practical)		
Type of Cou		Theory		
Course Asse	essment	Course Work (Home Assignment) (15%)		
		Mid Semester Examination (1 hour) (25%)		
		End Semester Examination (2 hour) (60%)		
Course		elop an appreciation of forces, stresses and strains on normal and inclined planes,		
Objectives		al stress and principal strains		
		elop basic understanding of various types of stress conditions viz. shear, bending		
		sion in structural members.		
		elop understanding of basic principles and methods of structural analysis and its		
		application to the determinate structures.		
Course	-	Upon successful completion of this course, it is expected that students will be able to:		
Outcome	1. Develop basic concepts of forces acting on simple structural elements and also the concept			
	of com	bined stresses (2D stress state) in materials used in Civil Engineering.		
	2. Unders	tand the behavior of simple structural elements under shear, bending and torsion		
	3. Unders	stand the fundamental principles used for the analysis of the determinate structures.		
	4. Analys	alyse determinate arches and trusses.		
Syllabus	Unit 1 Analysis of stress and strain: Mechanical properties, analysis of simple state of stress			
	and	d strains, elastic constants, example of state of tension, compression and shear.		
	An	alysis of two dimensional stresses and strains, Principal stress and Principal strain,		
	Мо	hr's circle.		
		alysis of determinate structures: Concept of bending and shear forces in simple		
		ms, Relationship between load, bending moment and shear force. Bending moment		
	and shear force diagram for simple beams and cantilevers.			
		nding shear and torsion: Bending and shear stresses in simple beams, concepts of		
		sion in circular shafts.		
		alysis of statically determinate trusses and arches.		
Suggestion		1. Kazmi, S. M. A., 'Solid Mechanics" TMH, Delhi, India.		
Text/Refere	nces	2. Norris, C.H. and Wilber, J. B. and Utku, S. "Elementary Structural Analysis"		
		McGraw Hill, Tokyo, Japan.		
		3. Timoshenko, S. and Young, D. H., "Elements of Strength of Materials", DVNC,		
		New York, USA		
		Additional Learning Source: Web links to e-learning:nptel		

COA1910 COMPUTER PROGRAMMING LABORATORY

Course Title		Computer Programming Laboratory
Course Number		COA1910
Credits		1.5
Course Category		ESA
Pre-Requisi	te if any	Nil
Contact Hou	ırs	0-0-3 (Lecture-Tutorial-Practical)
Type of Cou	ırse	Practical
Course Asse	essment	Course Work (Reports/Viva-Voce) (60%)
		End Semester Examination (2 hour) (40%)
Course	To make st	udents of all branches of B.Tech familiar with the programming concepts and to
Objectives		the algorithmic approach of problem solving in C language to gain working
		of C programming.
Course		derstand programming concepts and C language constructs such as operators and
Outcome		a types, control statements, functions etc.
		in algorithm development skills
		plement programming problems in C Language
Syllabus		on to Programming Environment, experiments to be conducted in the laboratory
		put not limited to, the following:
		ctice of program editing and compilation process.
		nple introductory algorithms and programs for getting input, printing formatted
		put etc
		ograms introducing elementary C concepts and data types
		ograms using operators
		ograms using control structures
		ograms for repetitive tasks and iterations
		ograms on arrays and strings
		ograms introducing the use of function calls
		ograms introducing basic concept of file handling and storage classes
Suggestion		1. Kemighan, Brian W., and Dennis M. Ritchie. "The C programming
Text/References		language." Prentice-Hall, Englewood Cliffs, New Jersey (1978).
		2. Gottfried "Theory and Problem of Programming with C" Schaum's Outline
		Series, TMC (Text book)
		3. E. Balagurusamy "Programming in ANSI C", McGraw Hill Education India
		Private Limited (2016) (Text Book)

EEA1110 PRINCIPLES OF ELECTRICAL ENGINEERING

Course Title	Principles of Electrical Engineering
Course Number	EEA1110
Credits	3
Course Category	ESA
Pre-Requisite if any	Nil
Contact Hours	2-1-0 (Lecture-Tutorial-Practical)
Type of Course	Theory
Course Assessment	Course Work (Home Assignment) (15%)
	Mid Semester Examination (1 hour) (25%)
	End Semester Examination (2 hour) (60%)

Course	The objective of this course is to build a firm foundation of the basics of electrical sciences in		
Objectives	Engineering and applications that pertain to it.		
Course	After successful completion of this course, the students will be able to:		
Outcome	1. Analyse and solve engineering problems related to electrical circuits by applying		
	fundamental laws and theorems.		
	2. Analyse magnetic circuits and understand the basics of construction and principle of		
	operation of transformer.		
	3. Understand the fundamentals of electrical machines, power systems and generation of		
	electrical energy.		
Syllabus	UNIT I: ELECTRIC CIRCUITS		
	Single phase ac circuits; concept of phasor, RLC series and parallel circuits, Network		
	theorems for ac & dc circuits, Transients in electric circuits, Three phase ac circuit; star and		
	delta connections, Three phase power.		
	UNIT II: MAGNETIC CIRCUITS & TRANSFORMERS		
	Magnetic circuits:		
	Magnetic circuits, Magnetization curve & Magnetic losses, Equivalence of magnetic &		
	electric circuits. Series & parallel magnetic circuits.		
	Transformers:		
	Construction & principle of operation; equivalent circuit, calculation of losses, efficiency and		
	voltage regulation.		
	UNIT III: INTRODUCTION TO ELECTRIC MACHINES & POWER SYSTEM Electrical Machines:		
	Rotating magnetic field, Alternator construction, principle of operation & emf equation.		
	Construction & principle of operation of Induction motor.		
	Basics of Power System:		
	Elements of power system; Typical voltage levels in a power system, Electric power		
	generation, Concept of Green energy.		
Suggestion			
Text/Referen	nces Dhanpat Rai & Sons.		
	2. Vincent Del Toro, "Electrical Engineering Fundamentals", Second Edition,		
	Prentice-Hall of India.		
	 D P Kothari & I J Nagrath, "Basic Electrical Engineering", Third Edition, Mc Graw Hill. 		
	4. Jimmie J. Cathey, Syed A. Nasar, "Basic Electrical Engineering", Schaum's		
	Outlines, Tata McGraw Hill, 1997.		

ELA1110 PRINCIPLES OF ELECTRONICS ENGINEERING

Course Title		PRINCIPLES OF ELECTRONICS ENGINEERING
Course Num	ber	ELA1110
Credits		3
Course Categ	gory	ESA
Pre-Requisite if any		None
Contact Hours		2-1-0 (Lecture-Tutorial-Practical)
Type of Course		Theory
Course Assessment		Course Work (Home Assignment) (15%)
		Mid Semester Examination (1 hour) (25%)
		End Semester Examination (2 hour) (60%)
Course	To familia	arize the students with electronics devices, its applications and digital logic systems.
Objectives		

Course	After successful completion of this course, the students will be able to:			
Outcome	1. Understanding the working principle and applications of electronic devices in circuits.			
	2. Introduction to operational amplifier and to develop ability to design opamp circuits.			
	3. Familiarization to mathematical operations on number system and digital logic.			
Syllabus	UNIT-I DIODE			
	Terminal characteristics of diodes; Diode models: ideal, constant voltage and piecewise linear;			
	Diode applications: Rectifiers, Half Wave, Full Wave, and Bridge Rectifier with Filter. Clippers			
	and Clampers. Zener diode: Operation, Characteristics, Voltage Regulation.			
	UNIT-II: BIPOLAR AND FIELD EFFECT TRANSISTOR			
	Bipolar Junction Transistor: operation, Current equation, Configurations, characteristics of			
	common emitter configuration, DC load line analysis and biasing, applications as amplifier			
	and switch. Enhancement MOSFET, construction, operation and characteristics, Current			
	equation.			
	UNIT-III: OPERATIONAL AMPLIFIER			
	OPAMP: characteristics, equivalent circuit, ideal behavior, open loop and closed loop concept,			
	concept of virtual short; OPAMP applications: Unity gain, inverting and non-inverting			
	amplifiers, Difference and Summing amplifier, integrator, and differentiator.			
	UNIT-IV: INTRODUCTION TO DIGITAL LOGIC:			
	Introduction to Number Systems: Binary, Octal, Hexadecimal systems; Addition and			
	Subtraction; Boolean algebra: Basic Theorems and Identities, DeMorgans theorem. Logic Gates:			
Suggestion I	Symbols and Truth Tables; Decoder, Encoder and Multiplexer.			
Suggestion I				
Text/Referen				
	2. A. S. sedra and K. C. Smith "Microelectronic Circuits: Theory and			
	Applications", 6 th Edition, Oxford University Press, New Delhi, 2013.			
	3. Ronald J. Tocci,* "Digital Systems: Principles and Applications", 10th			
	Edition, Pearson Education, New Delhi, 2007.			

EZH1110 ENGLISH

Course Title		English
Course Number		EZH1110
Credits		3
Course Cat	egory	HM
Pre-Requis	ite if any	Nil
Contact Ho	ours	2-1-0 (Lecture-Tutorial-Practical)
Type of Co	urse	Theory
Course Ass	sessment	Course Work (Home Assignment) (15%)
		Mid Semester Examination (1 hour) (25%)
		End Semester Examination (2 hour) (60%)
Syllabus	Unit I: Text: Comprehension Questions, Summary type as well as Short answer type and	
	questions o	n Vocabulary for 10 passages of the Basic Scientific English by Ewer and Latorre
	(Longman).	Units are 1,3,4,5,8&11 from main book and passages 4,11,13,17, from the supplement.
	Unit II:	Comprehension questions, summary or short answer types from the following
supplemen		tary readers:
	1. An	imal Farm by George Orwell.
	2. The	e time machine by HG Wells retold by Margery Gree (Macmillan).
	Unit III:	Note taking, note making exercises, report and process writings.
	Unit IV:	Precis writing
	Unit V:	Composition and spoken English.

MEA1110 ENGINEERING THERMODYNAMICS

Course Title		Engineering Thermodynamics
Course Number		MEA1110
Credits		4
Course Category		ESA
Pre-Requisit		None
Contact Hou	5	3-1-0 (Lecture-Tutorial-Practical)
Type of Cour		Theory
Course Asses		Course Work (Home Assignment) (15%)
Course Asses	sincin	Mid Semester Examination (1 hour) (25%)
		End Semester Examination (2 hour) (60%)
Course	1. Ir	npart knowledge of basic concepts and laws of thermodynamics.
Objectives		evelop capability to evaluate the performance of thermal engineering systems.
	2	
Course	After taki	ng this course the students shall be able to
Outcome		Inderstand the basic thermodynamic concepts, processes and parameters.
		earn the concepts of heat, work, First Law of Thermodynamics and apply it to
		ngineering systems.
	3. U	se and practice property tables and diagrams of pure substances.
	4. U	nderstand the concept of Second law and its applications to thermal systems.
Syllabus	Unit 1 : Introduction:	
	Basic Concepts and Definitions (Thermodynamic Systems, Properties, States, Processes, Cycles,	
	Thermodynamic Equilibrium, Quasi-Static Process), Pressure and its Measurement, Ze	
		nermodynamics, Temperature and its Measurement.
		irst Law of Thermodynamics and its Applications: Thermodynamic Concepts of
		Work; Types of Work Interactions, Indicator Diagram, First Law for Closed System,
		a Property, Internal Energy, Enthalpy, Specific heats, First Law for an Open System,
		ow Energy Equation (SFEE) and its Applications.
		ure Substance:
		Phases of Pure Substance, Two-Property Rule, Property Diagrams, Tables and Charts,
		, P~v, P~h and Mollier (h~s) diagrams, Phase Boundaries, S-L-V region, CP and TP,
		Fraction and its Measurement, Separating and Throttling Calorimeters.
		Second Law of Thermodynamics and its Applications: Limitations of First Law, ts and Corollaries of Second Law, Direct and Reversed Heat Engines (Efficiency and
		eversible and Irreversible Processes, Carnot Cycle, Thermodynamic Temperature
		ausius Inequality, Entropy, Introduction to Air-Standard Cycles (Otto, Diesel and
Suggestion R		
Brayton), Vapor Power Cycle (Rankine). Suggestion Readings/ Text/References 1. Thermodynamics, An Engineering Approach by Yunus A. Cengel Michael A Boles, McGraw-Hill Education. 2. Engineering Thermodynamics by D.B. Spalding and E. H. Cole, En Language Book Society, London. 3. Engineering Thermodynamics by P. K. Nag, Tata McGraw-Hill Education		

MEA1120 ENGINEERING MECHANICS

Course Title	Engineering Mechanics
Course Number	MEA1120
Credits	3
Course Category	ESA
Pre-Requisite if any	None

Contact Hou	rs	2-1-0 (Lecture-Tutorial-Practical)	
Type of Course		Theory	
Course Assessment		Course Work (Home Assignment) (15%) Mid Semester Examination (1 hour) (25%) End Semester Examination (2 hour) (60%)	
Course Objectives	To give students practice in applying their knowledge of mathematics, science, and engineering and to expand this knowledge into the vast area of Applied Mechanics. To enhance students' ability to design by requiring the solution of open ended problems. To prepare the students for higher level courses such as courses in Mechanics of Solids, Mechanical Design and Structural Analysis.		
Course Outcome	 Classi static Identi syster Apply engin 	er taking this course students should be able to Classify basic engineering mechanics concepts required for predicting the behaviour of static structures. Identify and choose various types of loading and support conditions that act on structural systems and model it using free-body diagrams. Apply pertinent mathematical and physical principles to predict the behaviour of an engineering system.	
	mode	op concepts of rigid body kinematics and dynamics with an emphasis on the lling and analysis of motion of rigid body systems.	
Syllabus	 Unit - I: Fundamental Concepts and principles of Mechanics. Reduction of a system of forces to a force couple system, free body diagrams, equilibrium of rigid bodies in 3 dimensions, reactional loading indeterminacy and solvability. Friction forces and laws of dry friction. Principle an application of virtual work. Unit - II: Analysis of Multiple particle system: Application of Newton's laws, linear and angula 		
	momentum, kinetic energy and work energy principle, principle of impulse and momentum t a system of particles. Unit – III:		
	Translation and rotation about a fixed axis, general plane motion, absolute and relative in plane motion, angular momentum of rigid body in plane motion. Problems of morigid bodies and system of rigid bodies Unit – IV:		
	Principle of work and energy, conservation of energy for rigid body and a system of rigid bodies, conservation of momentum and angular momentum of rigid body in a general 3E motion.		
Text/References Engineering: Statics and Dynamics, Metric edition, Mc.Graw Hill, New Determine Reference Book: Merium, JL, Engineering Mechanics (Volume I and Statics)		Text Book: Beer Ferdinand P. and Johnston Jr. E Russel, Vector Mechanics of Engineering: Statics and Dynamics, Metric edition, Mc.Graw Hill, New Delhi. Reference Book: Merium, JL, Engineering Mechanics (Volume I and II), 3rd edition, (SI version) John Wiley and sons, Inc, NT.	

MEA1910 ENGINEERING GRAPHICS LAB

Course Title	Engineering Graphics Lab
Course Number	MEA1910
Credits	1.5
Course Category	ESA
Pre-Requisite if any	Nil
Contact Hours	0-0-3 (Lecture-Tutorial-Practical)

Type of Course		Practical	
Course Assessment		Course Work (Reports/Viva-Voce) (60%)	
		End Semester Examination (2 hour) (40%)	
Course	1. To 1	understand and appreciate the importance of Engineering Graphics.	
Objectives	2. To t	understand the basic principles of Teaching/ Engineering Drawing.	
	3. To 1	understand the different steps in producing drawings according to BIS.	
	4. To l	learn basic engineering drawing formats.	
Course	After completion of the course the student shall be able to Understand:		
Outcome	1. C	lassify the theory of plain geometric projection.	
	2. N	Iarrate Plain/Diagonal/isometric scales in engineering graphics.	
	3. A	pply various concepts like dimensioning, conventions and standards related to	
	er	ngineering graphics in order to become professionally efficient.	
	4. R	ead and interpret drawings of simple machine parts/ sectional views in first and	
		nird angle of projections systems.	
		xplain the conventions and the methods of orthographic projection and isometric	
		rojection.	
		nprove their visualization skills so that they can propose these skills in developing	
		ew products.	
		ketch simple machine parts in isometric projections.	
		ommunicate ideas and information through engineering drawing.	
Syllabus	Unit-I:		
		ion to graphic language, instruments and their use, Conventional Lines and their	
	uses. Printing of letters and numerals, Methods of dimensioning and use of scales,		
	Construction of cycloidal curves and involutes.		
	Unit-2:		
	Necessity for orthographic projections 1 st & 3 rd angel methods of projection. Projection of		
	points & lines on three coordinate planes, projections of plain surfaces.		
Unit-3:		abie projections of simple mechine parts on different planes. Choice of view Hidden	
		phic projections of simple machine parts on different planes. Choice of view, Hidden	
	Unit-4:	paration of multi view drawings. Necessity of sectional views and their drawings.	
		etric Projections. Drawing of isometric projection of simple solids; Development of	
	surfaces of simple solids. Use and methods of drawing.		
Suggestion I		1. P.S. Gill," A Text Book of Geometrical Drg., Katson Pub. Housing, Ludhiana.	
Text/References		 Warren J. Lucadder," Fundamentals of Engg. Drg., Pren. Hall, N. Delhi. 	
		3. N.D. Bhatt, Elementary Engg. Drg., Charotar Pub. House, Anand, India.	
		4. Web Links :http://nptel.iitm.ac.in/courses.php,	
		www.cognifront.com/engdrawing.html	

MEA1920 MANUFACTURING PROCESS LAB

Course Title		Manufacturing Process Laboratory
Course Number		MEA1920
Credits		1.5
Course Category		ESA
Pre-Requisite if any		Nil
Contact Hours		0-0-3 (Lecture-Tutorial-Practical)
Type of Course		Practical
Course Assessment		Course Work (Reports/Viva-Voce) (60%)
		End Semester Examination (2 hour) (40%)
Course		understand and appreciate the importance of Engineering Graphics.
Objectives	2. To 1	understand the basic principles of Teaching/ Engineering Drawing.

	3. To understand the different steps in producing drawings according to BIS.		
	4. To learn basic engineering drawing formats.		
Course	After taking this course students should be able to:		
Outcome	1. List various types of ferrous and non-ferrous materials used for manufacturing processes.		
	2. Selection of processes, based upon jobs drawings used for manufacturing.		
	3. Describe and distinguish hot and cold working processes.		
	4. List various tools applied for cold and hot working process.		
	5. Classify and name machine tools required in various manufacturing processes.		
	6. Relate the job manufactured from practical relevance point of view.		
Syllabus	1. To prepare through tennon and mortise joint.		
	2. To prepare of funnel of GI Sheet.		
	3. To perform filling, drilling and tapping operations.		
	4. To perform electroplating.		
	5. Preparation of green sand mould and to perform casting process.		
	6. To prepare a square headed bolt.		
	7. To carry out gear cutting by simple indexing.		
	8. To prepare a single V-butt joint by are welding and study of gas welding process.		
	9. To perform facing, simple turning, taper turning, threading and knurling operations on a		
	lathe machine.		
	10. To perform plaining and slot cutting operations on shaper and slotter machines.		